Power transformers and Aurora

Almost 2 weeks ago, I was inspired by the Wall Street Journal web site and a blog from Joe Weiss to make a blog on a power transformer that was seized by the US government while on its way to its destination. “Are Power transformers Hackable”, the conclusion was yes they can be tampered with but it is very unlikely they are in the WAPA case.

Since than there were other discussions / posts, interviews, all in my opinion very speculative and in some cases even wrong. However there was also an excellent analysis report from Sans that provided a good analysis on the topic.

The report shows step by step that there is little ( more accurate there is no) evidence provided by the blogs and news media that China would have tampered with the power transformer in an attempt to attack the US power grid at a later moment in time.

That was also my conclusion, but the report provides much a more thorough and convincing series of arguments to reach this conclusion.

Something I hadn’t noticed at the time, and was added by Joe Weiss in one of his blogs, is the link to the Aurora attack. I have always been very skeptical on the Aurora attack scenario, not that I think it is not feasible, but because I think it will be stopped in time and is hard to properly execute. But the proposition of an Aurora attack in combination with tampering the power transformer is an unthinkable scenario for me.

Let’s step back to my previous blog, but add some more technical detail using the following sketch I made:

Drawing 1 – A hypothetical power transformer (with on load tap changer) control diagram

The diagram shows in the left bottom corner the power transformer with an on load tap changer to compensate for the fluctuations in the net.
Fluctuations that are quite normal now the contribution of renewable power generation sources such as solar and wind energy is increasing. To compensate for these fluctuations an automated tap changer continuously adapts the number of windings in the transformer. So it is not unlikely that the WAPA transformer would have an automated On Load Tap Changer (OLTC).

During an energized condition, which is always the case in an automated situation, this requires a make before break mechanism to step from one tap position to the next. This makes it a very special switching mechanism with various mechanical restrictions with regard to changing position, one of them is that a step is limited to a step toward an adjacent position. Because there is always a moment that both adjacent taps are connected it is necessary to restrict the current, so we need to add impedance to limit the current.

This transition impedance is created in the form of a resistor or reactor and consist of one or more units that are bridging adjacent taps for the purpose of transferring load from one tap to the other without interruption or an appreciable change in the load current. At the same time, they are limiting the circulating current for the period when both taps are used.

See the figure on the right for a schematic view of an OLTC. There is a low voltage and a high voltage side on the transformer. The on-load-tap-changer is at the high voltage side, the side with the most windings. In the diagram the tap changer is drawn with 18 steps, which is a typical value though I have seen designs that allowed as much as 36 steps. A step for this type tap changer might be 1.25% of the nominal voltage. Because we have three phases, we need to have three tap changers. The steps for each of the three phases need to be made simultaneously. Because of the make-before-break principle, the tap can only move one step at the time. It needs to pass all positions on its way to its final destination. When automated on-load-tap-changers are used the operating position needs to be shown in the control room.

For this each position has a transducer (not shown in the drawing) that provides a signal to indicate where the tap is connected. There is a motor drive unit moving the tap upward or downward, but always step by step. So the maximum change per step is approximate 1.25%. If a step change is required, is determined by the voltage regulator (See drawing 1), the voltage regulator measures the voltage (using an instrument transformer) and compares this with an operator set reference level. Based on the difference between reference level and measured level the tap is moved upward (decreasing the number of windings) or downward (increasing the number of windings).

To prevent that there will be jitter, caused by moving the tap upward and immediately downward, the engineer sets a delay time between the steps. A typical value is between 15 – 30 seconds.

Also if there is an operator that wants to manually jump from tap position 5 to tap position 10 (Manual Command mode), the software in the voltage regulator still controls this step by step by issuing consecutive raise/lower tap commands and on the motor drive side this is mechanically enforced by the construction. On the voltage regulator unit itself, the operator can only press a raise and lower button also limited to a single step.

The commands can be given from the local voltage regulator unit or from the HMI station in the substation or remotely from the SCADA in a central control center. But important for my conclusions later on, is to remember it is step by step … tap position by tap position … no athletics allowed or possible.

Now lets discuss the Aurora principle. The Aurora attack scenario is based on creating a repetitive variable load on the generator. For example disconnecting the generator from the grid and quickly connecting it again. The disconnection would cause the generator to suddenly increase its rotation speed because there is no load anymore, connecting the generator again to the grid would cause a sudden decrease in rotation speed. Taking the enormous mass of a generator into account, these speed changes result in a high mechanical stress on the shaft and bearings which would ultimately result into damage requiring to replace the generator. Which takes a long time because also generators are build specifically for a plant.

When we go from full load to no load and back this is a huge swing in mechanical forces released on the generator. This also because of the weight of the generator, you can’t stop it that easy. Additionally behind the generator we have the turbine creates the rotation by the steam from the boilers. So it is a relative easy mechanical calculation to understand that damage will occur when this happens. But this is when the load swings from full load to no load.

Using a tap changer to create an Aurora type of scenario doesn’t work. First of all even if we could have a maximum jump from the lowest tap to the highest tap (which is not the case because the tap would normally be somewhere around the mid-position, and it is mechanically impossible) it is a swing of 20-25% in load.

The load variations from a single step are approximately 1.25%, and the next step is only made after the time delay, in the Aurora scenario a reverse step of 1.25%. This is by no means sufficient to cause the kind of mechanical stress and damage that occurs after a swing from full load to zero load.

Additionally the turbine generator combination is protected by a condition monitoring function that detects various types of vibrations including mechanical vibrations of the shaft and bearings.

Since the transformer caused load swing is so small that it will not cause immediate mechanical issues, the condition monitoring equipment will either alert or shutdown the turbine generator combination when detecting anomalous vibrations. The choice between alert or shutdown is a process engineering choice. But in both cases the impact is quite different from the Aurora effect caused by manipulating breakers.

Repetitive tap changes are not good for generators, therefore the time delay was introduced to prevent any additional wear from happening. The small load changes will cause vibrations in the generator but these vibrations are detected by the condition monitoring system and this function will prevent damage if the vibrations are above the limit.

Than the argument can be, but the voltage regulator could have been tampered with. True, but voltage regulators are not coming from the same company that supplied the transformer. Same argument for the motor drive unit. And you don’t have to seize a transformer to check the voltage regulator, anyone can hand carry it.

And of course as the SANS report noted, the placement of the transformer needs to be right behind the turbine generator section. WAPA is a power distribution company, not a power generation company so not a likely situation too.

I read another scenario on Internet, a scenario based on the use of the sensors for the attack, therefore I added them to diagram 1. All the sensors in the picture check the condition of the transformer. If they would not accurately represent the values, this might lead to undetected transformer issues and a transformer failure over time. But it would be failure at a random point in time, inconvenient and costly but those things happen also if all sensors function. But manipulating them as part of a cyber attack to cause damage, I don’t think this is possible. At most the sensors could create a false positive or false negative alarm. So I don’t see a feasible attack scenario here that works for conducting an orchestrated attack on the power grid.

In general if we want to attack substation functions, there are a few options in diagram 1. The attack can come over the network, the SCADA is frequently connected to the corporate network or even to the Internet. Famous example is the Ukraine attack on the power distribution. We can try penetrating the WAN, these are not always private connections so there are opportunities here. So far never seen an example of this. And we can attack the time source, time is a very important element in the control of a power system. Though time manipulation this has been demonstrated, I haven’t seen it used against a power installation. But all these scenarios are not related to the delivery of a Chinese transformer and a reason for intercepting it.

So based on these technical arguments I don’t think the transformer can be manipulated in a way that causes an Aurora effect. Too many barriers are preventing this scenario. Nor do I think that tampering the sensors would actively enable an attacker to cause damage in a way where the attacker determines the moment of the attack. The various build-in (and independent) safety mechanism would also isolate the transformer before physical damage occurs.

For me it is reasonable hat the US government initiates this type of inspections, if a supply chain attack from a foreign entity is considered a serious possibility, than white listing vendors and inspecting the deliverable is a requirement for the process. If this is a great development for global commerce, I doubt very much. But I am an OT security professional, no economist, so this is just an opinion.

Enough written for a Saturday evening, I think this ends my blogs on power transformers.

There is no relationship between my opinions and publications in this blog and the views of my employer in whatever capacity.

Sinclair Koelemij

Geef een reactie